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Given an edge-weighted undirected graph with weights specifying dissimilarities between pairs of objects, represented by the
vertices of the graph, the clique partitioning problem (CPP) is to partition the vertex set of the graph into mutually disjoint subsets
such that the sumof the edgeweights over all cliques induced by the subsets is as small as possible.Wedevelop an iterated tabu search
(ITS) algorithm for solving this problem.The proposed algorithm incorporates tabu search, local search, and solution perturbation
procedures. We report computational results on CPP instances of size up to 2000 vertices. Performance comparisons of ITS against
state-of-the-art methods from the literature demonstrate the competitiveness of our approach.

1. Introduction

Clique partitioning is an important combinatorial optimiza-
tion problemwithmany real-life applications. It can be stated
as follows. Suppose that there are 𝑛 objects and, in addition,
there is an 𝑛 × 𝑛 symmetric matrix, 𝐷 = (𝑑

𝑖𝑗
), whose

entry 𝑑
𝑖𝑗
represents the dissimilarity between objects 𝑖 and 𝑗.

These data can be modeled by considering a complete edge-
weighted undirected graph with vertices corresponding to
objects and edge weights given by the dissimilarity matrix𝐷.
Let this graph be denoted by 𝐺 and its vertex set by 𝑉. The
clique partitioning problem (CPP for short) is to partition
the vertex set 𝑉 into mutually disjoint subsets such that the
sum of the edge weights over all cliques induced by the
subsets is as small as possible. Henceforth, we will denote
a feasible solution to the CPP as 𝑃 = (𝑉

1
, . . . , 𝑉

𝑚
), where

𝑚 ∈ [1, . . . , 𝑛], ⋃𝑚
𝑘=1

𝑉
𝑘
= 𝑉, and 𝑉

𝑘
∩ 𝑉
𝑙
= 0 for each pair

𝑘, 𝑙 ∈ {1, . . . , 𝑚}, 𝑘 ̸= 𝑙. The set of all such solutions is denoted
byΠ. Mathematically, the clique partitioning problem can be
expressed as

min
𝑃∈Π

𝐹 (𝑃) =

𝑚

∑

𝑘=1

∑

𝑖,𝑗∈𝑉𝑘,𝑖<𝑗

𝑑
𝑖𝑗
. (1)

The CPP bears some resemblance to the maximally diverse
grouping problem (MDGP) [1–3]. There are two main
differences between the CPP and the MDGP. First, the
latter assumes that the number of groups is fixed a priori.
Meanwhile, in the case of CPP, the number of clusters is
allowed to vary throughout solution process and is part of
the output of algorithms designed for the CPP. Second, in the
MDGP, the size of each group is either fixed or bounded from
above and possibly from below. No constraints are imposed
on the size of clusters in the formulation of the CPP. It follows
from the above observations that nontrivial instances of (1)
are defined by dissimilarity matrices with both positive and
negative entries.

The clique partitioning problem is of interest in several
contexts, one of them being combinatorial data analysis.
In this context, the objects are characterized by a set of
attributes. The values of an attribute are represented by a
binary equivalence relation.Then the CPP can be interpreted
as the problem of aggregation of binary relations. In this
case, the entry 𝑑

𝑖𝑗
of the matrix 𝐷 represents the number

of attributes on which objects 𝑖 and 𝑗 disagree minus the
number of attributes on which they agree. More details on
this approach to data analysis can be found, for example, in

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 353101, 10 pages
http://dx.doi.org/10.1155/2014/353101

http://dx.doi.org/10.1155/2014/353101


2 The Scientific World Journal

[4–7]. The applicability of the CPP has also been reported
in a number of other settings such as assigning flights to
airport gates [8, 9], modularity maximization in networks
[10], genomics [11], clustering [12, 13], and group formation
in cellular manufacturing [14, 15].

Given the practical importance of the problem, many
methods, both exact and heuristic, have been proposed
in the literature. One of the first exact algorithms for the
CPP was developed by Grötschel and Wakabayashi [16].
Their algorithm is based on the cutting plane technique. It
uses polyhedral results presented in the companion paper
[17]. Several new classes of facet-defining inequalities of the
clique partitioning polytope were introduced by Oosten et
al. [14]. The usefulness of the inequalities was demonstrated
by performing experiments on a set of CPP instances arising
in flexible manufacturing. Branch-and-bound algorithms for
the CPP were proposed in [18, 19]. Computational results
reported in [18, 19] show that these algorithms perform signif-
icantly better than the cutting planemethod of Grötschel and
Wakabayashi. Mehrotra and Trick [20] developed a branch-
and-price algorithm for solving the CPP. Actually, their
approach is applicable to the formulation that captures both
the CPP and the capacitated clustering problem. Sukegawa et
al. [21] presented a problem size reduction technique based
on the Lagrangian relaxation and the pegging test. Its validity
has been verified through extensive numerical experiments.
Recently, a branch-and-bound algorithm for the CPP was
proposed by Jaehn and Pesch [22]. Their algorithm incor-
porates several useful features including improved constraint
propagation techniques for fixing edges at the nodes of the
search tree.

It is well known that the CPP given by (1) is NP-hard
in its general form. Thus, CPP instances of larger size can
be solved only using heuristic algorithms. Perhaps the most
traditional way to approach a combinatorial optimization
problem is to resort to local search (LS) techniques. LS
algorithms for solving the CPP were developed by Régnier
[23] and by Marcotorchino and Michaud [24]. A multistart
LS procedure was considered by Guénoche [7]. The draw-
back of LS techniques is that they might get trapped into
poor quality local optima. The other way to approach the
problem is to use metaheuristic search methods. Simulated
annealing and tabu search implementations for the CPP
were proposed by de Amorim et al. [25]. It was found that
they performed very favourably in comparison to Régnier’s
heuristic. Kochenberger et al. [11] presented an approach that
relies on the idea of recasting the CPP into the form of a
binary quadratic program.Theprogram is solved using a tabu
search method incorporating strategic oscillation. Dorndorf
and Pesch [18] proposed an ejection chain algorithm for
clique partitioning. The algorithm takes advantage of the
variable depth local search strategy of Kernighan and Lin
[26]. Charon and Hudry [27] offered an adaptation of the
noising method to the CPP. They investigated a number of
variations of this method, differing in the way of adding
noise to the data. Computational experiments were carried
out on graphs of order up to 500. Brusco and Köhn [6] devel-
oped two versions of the neighborhood search algorithm
with different search intensification components. Specifically,

the first version uses Régnier’s LS procedure, whereas the
second one uses the tabu search algorithm. Both versions of
themethodwere shown to be superior to simulated annealing
and tabu search implementations from [25].

The focus of this paper is on developing an iterated tabu
search (ITS) algorithm for solving the CPP. The primary
intention is to combine search intensification and diversifi-
cation components in order to achieve better performance,
compared with that achievable by the best methods in the
literature. Our strategy is to test the algorithm on a suite of
larger CPP instances than those considered in the previous
studies. We report computational experience on problem
instances whose size goes up to 2000 vertices. We compare
our ITS technique against the heuristics of Brusco and Köhn
[6], which are the most successful of the current algorithms
for the clique partitioning problem.

It should be noted that various implementations of the
iterated tabu search method have also been proposed for
other optimization problems. Excellent results have been
reported in a number of papers, including [28–34]. The
tabu search metaheuristic used in ITS is a general-purpose
optimization method, based on which specific algorithms for
a variety of optimization problems have been developed. The
origins of tabu search go back to the seminal work of Glover
[35]. The basic concepts of the modern form of tabu search
have been presented by Glover in [36].

The remainder of this paper is arranged as follows. In
the next section, we present a detailed description of the ITS
algorithm for the CPP. In Section 3, we report the results of
computational experiments. Concluding remarks are given in
the last section.

2. The Algorithm

In this section, we describe the components of our iterated
tabu search algorithm for solving the clique partitioning
problem. The essence of the algorithm is simple: improve an
initial partition by repeatedly applying tabu search (TS) and
solution perturbation procedures. Run duration of the first
of them is controlled by imposing a limit on the number
of iterations. Upon discovering an improving solution by
TS, this solution is submitted to a local search procedure,
which explores its neighborhood in an attempt to make
further improvements. The implementation details of all
these ingredients of the approach are explained next.

2.1. General Scheme. An important aspect of the clique
partitioning problem is that the number of clusters is not
fixed. Thus, not only the content of the clusters but also
their number is varying throughout the search process. In
this regard, it is convenient to have an empty cluster added
to the partition vector 𝑃. We assume in the description of
algorithms that 𝑚 counts all clusters including the empty
one.There are two possible scenarios in managing a partition
when the number of clusters is changing. An easy case is
when a vertex is ordered to move to the empty cluster
in 𝑃. In this case, a new empty cluster is added to the
current partition. More processing is required if the last
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vertex of some cluster, say 𝑉
𝑙
, is relocated. In this case, 𝑉

𝑙

becomes empty. A possible strategy is to remove 𝑉
𝑙
from the

partition 𝑃 and renumber the remaining clusters. However,
in our approach, renumbering may prove to be unduly time
consuming. In particular, this operation implies the need for
additional computations when updating tabu information.
We have implemented another strategy, which rests on the
idea of retaining all emptied clusters. We use a bit-vector of
flags (𝑎

1
, . . . , 𝑎

𝑚
). Its components are set to 0 for all nonempty

clusters as well as precisely one selected empty cluster. Let
the latter be denoted by 𝑉

𝑒
. The components of the vector

corresponding to other empty clusters are equal to 1. Thus,
in the situation outlined above, the cluster𝑉

𝑙
is made inactive

by setting 𝑎
𝑙
:= 1. Obviously, if later in the search a vertex is

moved to 𝑉
𝑒
, then 𝑉

𝑙
can be selected as a new active empty

cluster. In this case, the algorithm sets 𝑎
𝑙
:= 0 and 𝑒 := 𝑙.

We now present an iterated tabu search algorithm for
the clique partitioning problem. The algorithm iteratively
invokes two procedures, TS (Tabu Search) andGSP (Get Start
Partition), which are detailed in the forthcoming subsections.

Consider the following ITS.

(1) Compute the initial value for the variable𝑚 denoting
the number of clusters (including the empty one).

(2) Generate a feasible solution 𝑃 = (𝑉
1
, . . . , 𝑉

𝑚
) to the

problem at random (let 𝑉
𝑚
in 𝑃 be an empty cluster).

Set 𝑎
𝑘
:= 0, 𝑘 = 1, . . . , 𝑚, 𝑒 := 𝑚, 𝑚∗ := 𝑚 − 1, 𝑃∗ :=

(𝑉
∗

1
, . . . , 𝑉

∗

𝑚−1
), 𝑉∗
𝑘
= 𝑉
𝑘
, 𝑘 = 1, . . . , 𝑚 − 1, and 𝐹∗ :=

𝐹(𝑃).
(3) Apply the tabu search procedure TS (𝑃,𝑚, 𝑒, 𝑃∗, 𝐹∗).
(4) Check if a stopping rule is satisfied. If so, then go to

(6). Otherwise go to (5).
(5) Apply the procedure GSP (𝑃, 𝑚, 𝑒, 𝐾, 𝐿), where 𝐾

and 𝐿 are randomly chosen values for the solution
perturbation parameters. Return to (3).

(6) Stop with the partition 𝑃
∗
= (𝑉

∗

1
, . . . , 𝑉

∗

𝑚
∗). The

objective function value on 𝑃∗ is equal to 𝐹∗.

A possible option to initialize the variable 𝑚 in Step (1)
of ITS is to use a fast constructive heuristic for the CPP. Our
choice is to employ a randomized variant of the agglomerative
heuristic (AH). This heuristic has been described in [19]. It
begins with each vertex declared as a separate cluster and,
in each step, merges two clusters into a larger one. This
process is modelled by a graph, with vertices representing
clusters. In order to select two clusters for agglomeration,
AH compares the weights of all the edges of this graph.
Among them, an edge having minimum weight is chosen,
breaking ties arbitrarily. Let this edge be (𝑘, 𝑙). If its weight
is nonnegative, then the algorithm terminates. Otherwise,
it merges the clusters represented by vertices 𝑘 and 𝑙 into
a single cluster. During this operation, for each cluster 𝑉

𝑞

with 𝑞 ∉ {𝑘, 𝑙}, the edges (𝑞, 𝑘) and (𝑞, 𝑙) are replaced by
one edge connecting 𝑞 and vertex, say 𝑘, representing the
merged cluster. The weight of this edge is set to the sum of
the weights of the edges (𝑞, 𝑘) and (𝑞, 𝑙). The merging step of
the heuristic is illustrated in Figure 1. The details of AH can
be found in [19]. In the ITS framework, we use a version of
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Figure 1: Merging step of the agglomerative heuristic.

AH in which an edge for merging is selected randomly from
a set of edges having the smallest weights. The size of this set
in our implementation is at most 5. Randomization of AH is
useful when ITS is run in a multistart fashion.

In Step (2) of the algorithm, a random initial solution
to the problem is generated. This is done by first randomly
generating a permutation of vertices. Then, a partition is
constructed by assigning either ⌊𝑛/(𝑚 − 1)⌋ or ⌈𝑛/(𝑚 − 1)⌉

consecutive vertices from the permutation to each of 𝑚 − 1

nonempty clusters. Before entering the search phase, this
partition is saved as the best found solution 𝑃∗. The number
of nonempty clusters in the best solution is denoted by 𝑚∗.
By running the TS procedure, 𝑃∗ is replaced with a solution
having a smaller objective function value.

The heart of the ITS algorithm is the loop comprising
Steps (3) to (5). Inside this loop, the procedures TS and
GSP are executed intermittently. The input to each of them
includes the current solution specified by the triplet (𝑃,𝑚, 𝑒).
The parameters 𝐾 and 𝐿 passed to GSP are used to control
the solution perturbation process. The meaning of these
parameters is explained later in this section, where also a
description of the GSP procedure is given. In Step (4) of ITS,
a stopping criterion is required to be specified. It may be
any, for example, upper bound on the number of calls to TS
or a stopping rule based on the CPU clock. We performed
computational experiments using time limit as the stopping
condition.

2.2. Tabu Search. The type of moves used in our implemen-
tation of tabu search is relocation of a vertex from its current
cluster to a different one. Given a partition 𝑃 ∈ Π, we define
the relocation neighborhood 𝑁

1
(𝑃) to be a set of all solutions

that can be obtained from 𝑃 by relocating a single vertex. In
the search process, it is important to efficiently compute the
differences between the values of the objective function at the
solutions in the neighborhood 𝑁

1
(𝑃) and the value of the

objective function at the current solution 𝑃. This can be done
by taking advantage of an auxiliary 𝑛 × 𝑚 matrix 𝐶 = (𝑐

𝑖𝑘
),

where 𝑐
𝑖𝑘
= ∑
𝑗∈𝑉𝑘

𝑑
𝑖𝑗
, 𝑖 ∈ 𝑉, and 𝑘 ∈ {1, . . . , 𝑚}. Consider a

vertex 𝑖 ∈ 𝑉 and suppose that its owning cluster in 𝑃 is 𝑉
𝑙
.

Let Δ(𝑃, 𝑖, 𝑘) denote the change in the value of the objective
function caused by relocating the vertex 𝑖 from the cluster 𝑉

𝑙

to the cluster𝑉
𝑘
, 𝑘 ̸= 𝑙 (see Figure 2). In the literature, the cost

variation between two solutions, like Δ(𝑃, 𝑖, 𝑘), is called the
move gain. We can express Δ(𝑃, 𝑖, 𝑘) in terms of the entries of
the matrix 𝐶

Δ (𝑃, 𝑖, 𝑘) = 𝑐𝑖𝑘
− 𝑐
𝑖𝑙
. (2)

In the description of ITS components given below, we
will denote by 𝜌(𝑖, 𝑃) the index of the cluster in 𝑃 which
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Figure 2: Relocation move.

the vertex 𝑖 belongs to. Thus, if 𝑖 ∈ 𝑉
𝑙
∈ 𝑃, then 𝜌(𝑖, 𝑃) = 𝑙.

The first component we present is the tabu search procedure.
It maintains three data structures to store the tabu status
of moves: the matrix 𝑇 = (𝑡

𝑖𝑘
) with rows and columns

corresponding to vertices and clusters, respectively, and lists
𝜏 and 𝜏󸀠. The lists are used to represent, in a compact form,
moves that are forbidden for a certain number of iterations. If,
for example, vertex 𝑖 is relocated from cluster𝑉

𝑙
of size greater

than one to a different cluster, then 𝑡
𝑖𝑙
is set to 1, the vertex 𝑖

is appended to the list 𝜏, and the cluster index 𝑙 is appended
to the list 𝜏󸀠. The reason behind the introduction of the lists
𝜏 and 𝜏󸀠 is to efficiently flip 𝑡

𝑖𝑘
back from 1 to 0, whenever

a specified number of iterations have been executed. This
number is called tabu tenure and is considered as a parameter,
denoted as 𝑡, of the TS procedure. Another parameter of TS
is the number of iterations 𝛼. The procedure can be stated as
follows.

Consider the following TS(𝑃,𝑚, 𝑒, 𝑃∗, 𝐹∗).

(1) Initialize 𝑡
𝑖𝑘
for each vertex 𝑖 ∈ 𝑉 and each cluster 𝑉

𝑘
,

𝑘 ∈ {1, . . . , 𝑚}, with 0. Set 𝛼 := 0 and 𝑓 := 𝐹(𝑃).
(2) Increase 𝛼 by 1. Set Δ∗ := ∞, Δ󸀠 := 𝐹∗ −𝑓, and 𝑏 := 0.
(3) Iterating through all vertices 𝑖 ∈ 𝑉 and clusters𝑉

𝑘
, 𝑘 ∈

{1, . . . , 𝑚}, such that 𝑘 ̸= 𝜌(𝑖, 𝑃) and 𝑎
𝑘
= 0, perform

the following steps.

(3.1) Compute 𝑧 := Δ(𝑃, 𝑖, 𝑘) by (2). If 𝑧 < Δ󸀠, then
proceed to (3.2). Otherwise, check whether one
of the following conditions holds: (i) 𝑡

𝑖𝑘
= 1; (ii)

𝑏 > 0; (iii) |𝑉
𝜌(𝑖,𝑃)

| = 1 and 𝑘 = 𝑒. If so, then go
to (3.4); if not, go to (3.3).

(3.2) Increase 𝑏 by 1 and set Δ∗ := 𝑧, V := 𝑖, and 𝑞 := 𝑘
with probability 1/𝑏. Go to (3.4).

(3.3) If 𝑧 < Δ∗, then set Δ∗ := 𝑧, V := 𝑖, 𝑞 := 𝑘, and
𝜂 := 1. Otherwise, if 𝑧 = Δ∗, then increase 𝜂 by
1 and set V := 𝑖 and 𝑞 := 𝑘 with probability 1/𝜂.

(3.4) Repeat (3.1)–(3.3) until all pairs 𝑖, 𝑘 have been
examined.

(4) Save 𝜌(V, 𝑃) as 𝑙 and |𝑉
𝑙
| as ℎ. For each 𝑖 ∈ 𝑉 \ {V},

subtract 𝑑
𝑖V from 𝑐

𝑖𝑙
and add it to 𝑐

𝑖𝑞
. Move the vertex

V from the cluster 𝑉
𝑙
to the cluster 𝑉

𝑞
. Increase 𝑓

by Δ∗. If 𝑉
𝑙
becomes emptied, then mark this cluster

as inactive by setting 𝑎
𝑙
:= 1. Otherwise, if 𝑞 = 𝑒,

then perform the following operations. If there exists
a cluster 𝑉

𝑟
such that 𝑎

𝑟
= 1, then set 𝑎

𝑟
:= 0 and

𝑒 := 𝑟. Otherwise, all clusters appear to be active, and,
in this case, increment 𝑚 by 1, add an empty cluster
𝑉
𝑚
to 𝑃, initialize the 𝑚th column of both 𝑇 and 𝐶

with zero vector, and set 𝑒 := 𝑚, 𝑎
𝑚
:= 0.

(5) If 𝑏 > 0, then proceed to (6). Otherwise, go to (7).
(6) Call the local search procedure LS(𝑃,𝑚, 𝑒). Let 𝑃 also

denote the solution returned by it. Form a partition
𝑃
∗
:= (𝑉
∗

1
, . . . , 𝑉

∗

𝑚̃
) by identifying nonempty clusters

𝑉
∗

𝑟
, 𝑟 = 1, . . . , 𝑚̃, among 𝑉

1
, . . . , 𝑉

𝑚
. Set 𝑚∗ := 𝑚̃,

𝐹
∗
:= 𝐹(𝑃

∗
), and 𝑓 := 𝐹∗.

(7) If 𝛼 = 𝛼, then return. Otherwise, perform the
following operations. If 𝛼 > 𝑡, then set 𝑡

𝜏(1)𝜏
󸀠
(1)
:= 0

and remove 𝜏(1) and 𝜏󸀠(1) from the lists 𝜏 and 𝜏󸀠,
respectively. If 𝛼 ⩽ 𝑡, then bypass these modifications
of 𝑇, 𝜏, and 𝜏󸀠. In both cases, add the vertex V at the
end of the list 𝜏. Check whether ℎ = 1. If so, then add
the empty cluster index 𝑒 at the end of the list 𝜏󸀠 and
set 𝑡V𝑒 := 1. If not, then add 𝑙 at the end of 𝜏󸀠 and set
𝑡V𝑙 := 1. Go to (2).

In the above description, 𝛼 is the iteration counter, 𝑓 is
the value of the current solution, and 𝑏 stands for the number
of solutions found in the current iteration, which are better
than the best partition, 𝑃∗, recorded so far. The counter 𝑏 is
increased if and only if the move gain Δ is strictly less than
the threshold Δ󸀠. In Step (3) of TS, there are two possible
cases to consider for a feasible pair consisting of vertex 𝑖
and cluster 𝑉

𝑘
. If Δ < Δ

󸀠, then a new improving solution
specified by the pair (𝑖, 𝑘) is found. It is always accepted if
𝑏 = 1 and accepted with probability 1/𝑏 if 𝑏 > 1. If, however,
Δ ⩾ Δ

󸀠, then conditions (i)–(iii) in Step (3.1) are checked.
Condition (iii) is reasonable because it makes no sense to
relocate the last vertex of a cluster to the empty cluster. If at
least one of the conditions (i)–(iii) is satisfied, then the pair
(𝑖, 𝑘) is immediately rejected. Otherwise, (𝑖, 𝑘) is compared
with the best-gain move in Step (3.3). The selected move is
represented by the pair (V, 𝑞). In Step (4) of TS, 𝜌(V, 𝑃) and
|𝑉
𝜌(V,𝑃)| are saved in order to be used later when updating

the tabu data structures at the end of the iteration. The same
step also updates both the current solution and the matrix 𝐶
and, if needed, introduces a new active empty cluster. After
these rearrangements, the local search procedure is applied
only when an improving solution was found. The resulting
partition is saved as the new best solution. While doing this,
the partition is shrunk by removing all empty clusters. Step
(7) of TS updates the tabu information. If 𝛼 > 𝑡, then the
tabu status of the oldest pair (vertex, cluster) is revoked by
appropriately modifying the data structures 𝑇, 𝜏, and 𝜏

󸀠.
For any 𝛼, the pair consisting of the selected vertex and,
depending on the value of ℎ, either its previous cluster or the
empty one is made forbidden for the next 𝑡 iterations.

Our local search procedure for the CPP involves moves
of two types. One of them is the same as that used in the TS
algorithm.Another type ofmove is to simultaneously relocate
two vertices from their current cluster to a different one.
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Given a partition 𝑃, two vertices 𝑖 and 𝑗 such that 𝜌(𝑖, 𝑃) =
𝜌(𝑗, 𝑃), and a cluster 𝑘 ̸= 𝜌(𝑖, 𝑃), we denote by 𝑃(𝑖, 𝑗, 𝑘) the
solution that is derived from 𝑃 by moving vertices 𝑖 and 𝑗
from the cluster 𝑉

𝜌(𝑖,𝑃)
to the cluster 𝑉

𝑘
. Let 𝑁

2
(𝑃) stand

for the set of all solutions that can be obtained in this way.
The gain 𝛿(𝑃, 𝑖, 𝑗, 𝑘) of moving from solution 𝑃 to solution
𝑃(𝑖, 𝑗, 𝑘) ∈ 𝑁

2
(𝑃) can be efficiently calculated as follows:

𝛿 (𝑃, 𝑖, 𝑗, 𝑘) = 𝐹 (𝑃 (𝑖, 𝑗, 𝑘)) − 𝐹 (𝑃)

= 𝑐
𝑖𝑘
− 𝑐
𝑖𝑙
+ 𝑐
𝑗𝑘
− 𝑐
𝑗𝑙
+ 2𝑑
𝑖𝑗
,

(3)

where 𝑙 = 𝜌(𝑖, 𝑃) = 𝜌(𝑗, 𝑃). A move of the second type is
illustrated in Figure 3. Notice there that relocating a single
vertex, 𝑖 or 𝑗, does not lead to an improvement.

At each iteration, the local search (LS) procedure first
explores the neighborhood 𝑁

2
(𝑃) and, if no solution better

than 𝑃 is found, then explores the neighborhood𝑁
1
(𝑃). The

procedure consists of the following steps.
Consider the following LS(𝑃,𝑚, 𝑒).

(1) Randomly generate a permutation of vertices, denot-
ed by (𝜋(1), . . . , 𝜋(𝑛)), and a permutation of clusters,
denoted by (𝜋󸀠(1), . . . , 𝜋󸀠(𝑚)).

(2) Initialize Δ∗ with 0.
(3) For 𝑖󸀠 = 1, . . . , 𝑛 − 1 and 𝑗󸀠 = 𝑖

󸀠
+ 1, . . . , 𝑛, do the

following.

(3.1) Set 𝑖 := 𝜋(𝑖
󸀠
) and 𝑗 := 𝜋(𝑗

󸀠
). If either

𝜌(𝑗, 𝑃) ̸= 𝜌(𝑖, 𝑃) or 𝑑
𝑖𝑗
⩾ 0, then go to (3.4).

Otherwise proceed to (3.2).
(3.2) Iterating through all clusters 𝑘 := 𝜋

󸀠
(𝑘
󸀠
), 𝑘󸀠 =

1, . . . , 𝑚, such that 𝑘 ̸= 𝜌(𝑖, 𝑃) and 𝑎
𝑘

= 0,
perform the following steps.

(3.2.1) Compute 𝑧 := 𝛿(𝑃, 𝑖, 𝑗, 𝑘) by (3).
(3.2.2) Check whether 𝑧 < Δ∗. If so, then set Δ∗ :=

𝑧 and 𝑞 := 𝑘.

(3.3) If Δ∗ < 0, then set V := 𝑖, 𝑢 := 𝑗 and go to (7).
(3.4) Repeat (3.1)–(3.3) until all pairs 𝑖󸀠, 𝑗󸀠have been

examined.

(4) For 𝑖󸀠 = 1, . . . , 𝑛, do the following.

(4.1) Set 𝑖 := 𝜋(𝑖󸀠).
(4.2) Iterating through all clusters 𝑘 := 𝜋

󸀠
(𝑘
󸀠
), 𝑘󸀠 =

1, . . . , 𝑚, such that 𝑘 ̸= 𝜌(𝑖, 𝑃) and 𝑎
𝑘

= 0,
perform the following steps.

(4.2.1) Compute 𝑧 := Δ(𝑃, 𝑖, 𝑘) by (2).
(4.2.2) Check whether 𝑧 < Δ∗. If so, then set Δ∗ :=

𝑧 and 𝑞 := 𝑘.

(4.3) If Δ∗ < 0, then set V := 𝑖 and go to (6).

(5) Return (because Δ∗ = 0, which means that no
improving move is detected).

(6) Update the current solution 𝑃 and auxiliary data as in
Step (4) of TS. Go to (8).

(7) Let 𝑙 := 𝜌(V, 𝑃). For each 𝑖 = 1, . . . , 𝑛 different from
V and 𝑢, subtract 𝑑

𝑖V + 𝑑𝑖𝑢 from 𝑐
𝑖𝑙
and add it to 𝑐

𝑖𝑞
.

Also, subtract 𝑑V𝑢 from both 𝑐V𝑙 and 𝑐𝑢𝑙 and add 𝑑V𝑢
to both 𝑐V𝑞 and 𝑐𝑢𝑞. Move the vertices V and 𝑢 from
the cluster𝑉

𝑙
to the cluster𝑉

𝑞
. If𝑉
𝑙
becomes emptied,

then set 𝑎
𝑙
:= 1. Otherwise, if 𝑞 = 𝑒, then perform the

following operations. If there exists a cluster 𝑉
𝑟
such

that 𝑎
𝑟
= 1, then set 𝑎

𝑟
:= 0 and 𝑒 := 𝑟. If no such

cluster exists, then increment 𝑚 by 1, add an empty
cluster 𝑉

𝑚
to 𝑃, initialize the 𝑚th column of 𝐶 with

zero vector, and set 𝑒 := 𝑚, 𝑎
𝑚
:= 0.

(8) If 𝑚 has been increased (either in Step (6) or in Step
(7)), then expand 𝜋󸀠 by setting 𝜋󸀠(𝑚) := 𝑚. Go to (2).

Each iteration of the described procedure scans the
neighborhood𝑁

2
(𝑃) in Step (3) and the neighborhood𝑁

1
(𝑃)

in Step (4). Both vertices and clusters are considered in
the order given by random permutations. Such an approach
allows us to introduce some extra randomization in the
ITS algorithm. In Step (3) of the LS procedure, only pairs
of vertices connected by a negative edge and, of course,
belonging to the same cluster are examined. Indeed, if 𝑑

𝑖𝑗
⩾ 0

for some 𝑖, 𝑗 ∈ 𝑉, then, as it follows from (3), it is meaningful
to ignore simultaneous relocation of the vertices 𝑖 and 𝑗 and to
evaluatemoves involving only one of these vertices. For a pair
of vertices passing the test in Step (3.1), the aim is to identify
a move with negative value of 𝛿 calculated from (3). If two or
more such moves exist, then the one with the minimum 𝛿 is
selected. Throughout this process, the value of the best move
is saved as Δ∗. The loop in Step (3.2) evaluates the quality of
partitions obtained from 𝑃 by relocating the vertices 𝑖 and 𝑗
to other clusters than their own. Provided that Δ∗ is negative,
the index of the best cluster is stored in the variable 𝑞. If at
the end of the loop Δ∗ < 0, then the current solution 𝑃 is
replaced by the partition 𝑃(𝑖, 𝑗, 𝑞) ∈ 𝑁

2
(𝑃) in Step (7) of LS.

If, however, no improving neighbor in 𝑁
2
(𝑃) is found, then

Step (4) is executed. Its structure is very similar to that of
Step (3). If, for a vertex 𝑖 and at least one cluster, the value
of Δ is negative, then the move involving 𝑖 is accepted and
the current solution is replaced with a better one in Step (6).
Reaching Step (5) means that a locally optimal solution is
obtained, and no improving move of two considered types
is available. Step (7) of LS is similar to Step (4) of TS. Little
difference is seen in formulas used for updating the matrix𝐶.

2.3. Solution Perturbation. Another crucial component of the
iterated tabu search algorithm is the solution perturbation
procedure GSP. When applied within the ITS framework, it
produces starting partitions for tabu search. Such partitions
are generated by making a certain number of moves. In con-
trast to the commonly used method whenmoves are selected
randomly, our procedure favours moves that minimize, to
some degree, the degradation of the objective function value
of the problem. Still, the procedure incorporates a random-
ization element. At each step, it selects amove at random from
a list of the most attractive candidates. The upper limit on
the cardinality of this list, denoted by 𝐿, is a parameter of the
procedure. Another parameter, 𝐾, is the number of vertices
that have to be moved from their current clusters to different
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Figure 3: Simultaneously relocating two vertices.

ones. The input to GSP, of course, includes a partition 𝑃.
In our implementation, ITS submits to GSP the partition
that has been returned by the most recent invocation of the
TS procedure. While selecting a perturbation move, GSP
partially explores the neighborhood𝑁

2
(𝑃). Basically, GSP is

reminiscent of the above described LS algorithm with Steps
(4) and (6) removed. The solution perturbation procedure
can be described as follows.

Consider the following GSP(𝑃,𝑚, 𝑒, 𝐾, 𝐿).

(1) Set 𝑈 := 0 and𝑊:= 0.
(2) Iterating through all vertex pairs 𝑖, 𝑗 ∈ 𝑉 \ 𝑈 and

clusters 𝑉
𝑘
such that 𝑒 ̸= 𝑘 ̸= 𝜌(𝑖, 𝑃) = 𝜌(𝑗, 𝑃), 𝑎

𝑘
= 0,

and 𝑑
𝑖𝑗
< 0, perform the following steps.

(2.1) Compute 𝑧 := 𝛿(𝑃, 𝑖, 𝑗, 𝑘) by (3). If |𝑊| < 𝐿, then
go to (2.3). Otherwise, proceed to (2.2).

(2.2) Identify a triplet 𝑤󸀠 ∈ 𝑊 such that 𝑍(𝑤󸀠) ⩾
𝑍(𝑤) for all 𝑤 ∈ 𝑊. If 𝑧 < 𝑍(𝑤󸀠), then remove
𝑤
󸀠 from 𝑊 and go to (2.3). Otherwise, repeat

from (2.1) until all proper combinations of the
vertex pair and cluster have been examined.

(2.3) Create a triplet 𝑤󸀠󸀠 = (𝑖, 𝑗, 𝑘) with weight
𝑍(𝑤
󸀠󸀠
) = 𝑧 attached to it. Add 𝑤󸀠󸀠 to𝑊.

(3) If𝑊 is empty, then return with 𝑃. Otherwise, select a
triplet 𝑤, say 𝑤 = (V, 𝑢, 𝑞), from𝑊 at random. Add
the vertices V and 𝑢 to 𝑈.

(4) Update the current solution 𝑃 and auxiliary data as in
Step (7) of LS. If |𝑈| < 𝐾, then make the set𝑊 empty
and go to (2). Otherwise, return with the partition 𝑃.

As can be seen from the description, a single iteration of
GSP comprises Steps (2) to (4). When 𝐾 is sufficiently less
than 𝑛, GSP performs ⌈𝐾/2⌉ iterations. In each of them, the
set 𝑈 of the relocated vertices is enlarged by the addition of
a pair of vertices selected in Step (3). In the procedure, 𝑊
stands for the candidate list of the best moves. Amove in𝑊 is
represented by the triplet consisting of two vertices and index
of their target cluster. In Step (2), the neighborhood𝑁

2
(𝑃) is

searched only partially. Relocating a vertex twice during the
run ofGSP is prevented by ignoring vertices that belong to the
set 𝑈. Also, like in LS, the search is restricted only to pairs of
vertices that are connected by a negative edge. In addition, the
use of an empty target cluster is forbidden.The fitness of legal
moves (triplets) is evaluated by (3). If the new triplet is better
than the worst triplet in the candidate list𝑊 and the size of
𝑊 is equal to 𝐿, then the worst triplet in𝑊 is replaced by the
new one. In Step (3), the move to be performed is selected
from the list𝑊 at random. The moved vertices are added to

the set𝑈.The solution 𝑃 is updated precisely in the same way
as in Step (7) of LS. The above outlined process is repeated
until the cardinality of the set 𝑈 reaches the prescribed limit
𝐾.

The value of the parameter 𝐾 for each run of GSP is
generated using three secondary parameters 𝐾

1
, 𝐾
2
, and

𝐾min. First, an integer 𝐾󸀠 from the interval [⌊𝐾
1
𝑛⌋, ⌈𝐾

2
𝑛⌉]

is chosen uniformly at random. Then, 𝐾󸀠 is compared with
𝐾min. If𝐾

󸀠
> 𝐾min, then𝐾 is uniformly and randomly chosen

from the integers in the interval [𝐾min, 𝐾
󸀠
]. Otherwise, 𝐾 is

set to 𝐾󸀠. Thus, in the general case, 𝐾 is drawn from the
interval whose right endpoint is not fixed throughout the
execution of the ITS algorithm. The value of the parameter
𝐿 for GSP is an integer randomly drawn from the interval
[𝐿
1
, 𝐿
2
], where 𝐿

1
and 𝐿

2
> 𝐿
1
are some constants of the

algorithm. The most appropriate values of 𝐾
1
, 𝐾
2
, 𝐾min, 𝐿1,

and 𝐿
2
should be selected experimentally.

3. Computational Experiments

The main purpose of experimentation was to show the
attractiveness and competitiveness of our approach. In order
to evaluate the performance of the developed algorithm, we
compared it with two state-of-the-art techniques for the CPP,
proposed by Brusco andKöhn [6], namely, the neighborhood
search heuristic coupled with the relocation procedure in one
case andwith the tabu search algorithm in another case. In the
study of Brusco andKöhn [6], these algorithms are denoted as
NS-R andNS-TS, respectively.When referring to them in this
paper, we will use the same names. To be more focused, we
do not experiment with other existing methods for the CPP,
which are less successful in comparison with both NS-R and
NS-TS.

3.1. Experimental Protocol. Thedescribed algorithmhas been
coded in the C programming language. Fortran implemen-
tations of NS-R and NS-TS were obtained from Brusco and
Köhn [6]. All the tests have been carried out on a PC
with an Intel Core 2 Duo CPU running at 3.0GHz. As a
testbed for evaluating the performance of the algorithms,
we used a set of CPP instances from the literature as well
as two sets of additional instances of our own. The first set
consists of 7 benchmark instances originally considered by
Charon andHudry [27] (rand100-100, rand300-100, rand500-
100, rand300-5, zahn300, sym300-50, and regnier300-50) and
6 instances introduced by Brusco andKöhn [6] (rand200-100,
rand400-100, rand100-5, rand200-5, rand400-5, and rand500-
5). For descriptions of these problem instances, see [6, 27]. In
order to test the algorithms more thoroughly, we generated
two additional sets of large randomCPP instances.Thefirst of
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Table 1: Comparison of ITS with NS-R and NS-TS on the CPP instances considered by Brusco and Köhn.

Instance Best known ITS NS-R NS-TS
Value 𝐹 𝐹best − 𝐹 (𝐹aver − 𝐹) Succ. 𝐹 − 𝐹 𝐹 − 𝐹

rand100-5 −1407 0 (0) 10 0 0
rand100-100 −24296 0 (0) 10 0 0
rand200-5 −4079 0 (0) 10 0 0
rand200-100 −74924 0 (0) 10 0 0
rand300-5 −7732 0 (0) 10 3 3
rand300-100 −152709 0 (0) 10 0 0
sym300-50 −17592 0 (0) 10 0 0
regnier300-50 −32164 0 (0) 10 0 0
zahn300 −2504 0 (0) 10 1 0
rand400-5 −12133 0 (0.1) 9 37 13
rand400-100 −222757 0 (42.0) 7 110 208
rand500-5 −17127 0 (5.2) 7 58 41
rand500-100 −309125 118 (224.3) 0 118 735
Average 9.1 (20.9) 8.7 25.2 76.9

them consists of 20weighted graphs of order 500.Theweights
of edges are integer numbers drawn uniformly at random
from the interval [−5, 5] for the first 10 graphs and from the
interval [−100, 100] for the remaining 10 graphs. The second
additional set consists of three subsets, each of cardinality 5.
The order of the graphs in the first to third subsets is 1000,
1500, and 2000, respectively. The edge weights are random
integers uniformly distributed in range [−100, 100].

The TS and GSP procedures described in the previous
section have several parameters that affect the performance
of the ITS algorithm. Their values were determined by
conducting a preliminary experiment. Based on the obtained
results, in the main experiments, the TS parameter 𝛼 was
fixed at 200. As for the tabu tenure, we have found that a good
choice is to take 𝑡 = min(10, 𝑛/4). The parameters used to
generate 𝐾 and 𝐿 values were set as follows: 𝐾

1
= 0.1, 𝐾

2
=

0.6, 𝐾min = 10, 𝐿1 = 10, and 𝐿2 = 300. The only algorithm’s
parameter whose value is required to be submitted to our ITS
code is a maximum CPU time limit per run.

Given its stochastic nature, we executed the ITS algorithm
10 times on each of the test problems. However, unlike ITS,
both NS-R and NS-TS were run only once on each instance
of size 500 or less. The reason behind such a decision was
our intention to use the original executable code from [6],
which does not have an option of restarting the algorithms.
For graphs of order greater than 500, we used a very slightly
modified version of the source (Fortran) code developed in
[6]. In fact, wemade just a couple ofminor adjustments. First,
we increased the size of arrays and matrices from 500 and
500 × 500 to 2000 and 2000 × 2000, respectively. Second,
we included in the possibility to restart the algorithms an
arbitrary number of times. We capitalized on this possibility
in the experiment on the third dataset. Like in the case of ITS,
we ran both NS-R and NS-TS 10 times on each instance in
this set. It should be noted, however, that, due to a different
Fortran compiler we used, the generated executable codemay

appear to be less efficient than that provided by Brusco and
Köhn [6].

As mentioned above, the input to our ITS code includes
the time limit per run.We imposed time limits of 100 seconds,
1000 seconds, 2000 seconds, 1 hour, 2 hours, and 5 hours for
test problems with 𝑛 ⩽ 200, 𝑛 = 300, 400 ⩽ 𝑛 ⩽ 500, 𝑛 =
1000, 𝑛 = 1500, and 𝑛 = 2000, respectively. The same cutoff
times were used for NS-R and NS-TS as well.

3.2. Numerical Results. The results of solving CPP instances
in the first dataset are summarized in Table 1. Its first
column shows the instance names in which the integer
preceding “-” indicates the number of vertices. The second
column presents the best known values reported in the
literature. For rand100-100, rand300-5, rand300-100, sym300-
50, regnier300-50, zahn300, and rand500-100, the best solu-
tions were obtained by Charon and Hudry [27]. The authors
mention that the experiments on these instances took up to
several days of the CPU time. For the remaining instances in
Table 1, the best known results were reported by Brusco and
Köhn [6]. The third column shows the gap of the value of the
best solution out of 10 runs (the gap of the average value of 10
solutions) found by ITS to the value displayed in the second
column.The fourth column gives the success rate of reaching
the best known value 𝐹. The last two columns provide the
deviation of the value of the solution delivered by NS-R and,
respectively, NS-TS from the value 𝐹. The bottom row shows
the results averaged over the whole set of instances.

From Table 1, we see that ITS is superior to both NS
algorithms. To be fair, we have to keep in mind that both
NS-R and NS-TS were run only once, as opposed to 10
runs in the case of ITS. Therefore, we should compare the
results displayed in the last two columns with those shown
in parentheses for the ITS algorithm. It can be observed that
both variations of NS failed to solve some of the instances
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Table 2: Comparison of ITS with NS-R and NS-TS on the CPP instances of size 500.

Instance Best value ITS NS-R NS-TS
𝐹 𝐹best − 𝐹 (𝐹aver − 𝐹) Succ. 𝐹 − 𝐹 𝐹 − 𝐹

p500-5-1 −17691 0 (10.5) 1 30 0
p500-5-2 −17169 0 (1.5) 6 29 0
p500-5-3 −16815 0 (1.0) 3 92 129
p500-5-4 −16808 0 (3.5) 8 71 70
p500-5-5 −16957 0 (0.0) 10 53 51
p500-5-6 −16615 0 (2.9) 6 134 77
p500-5-7 −16649 0 (8.0) 1 59 71
p500-5-8 −16756 0 (0.9) 7 153 142
p500-5-9 −16629 0 (5.8) 4 17 77
p500-5-10 −17360 0 (0.0) 10 60 62
p500-100-1 −308896 0 (18.9) 4 9 1827
p500-100-2 −310163 0 (171.5) 2 1713 858
p500-100-3 −310477 0 (94.7) 4 2149 718
p500-100-4 −309567 0 (282.9) 1 904 796
p500-100-5 −309135 0 (41.6) 7 2528 0
p500-100-6 −310280 0 (66.7) 7 0 722
p500-100-7 −310063 0 (5.8) 9 1456 2088
p500-100-8 −303148 0 (344.0) 5 2205 1686
p500-100-9 −305305 0 (7.2) 9 1232 1110
p500-100-10 −314864 0 (7.6) 9 76 106
Average 0 (53.7) 5.7 648.5 529.5

of size up to 300. Meanwhile, ITS was able to reach the best
known solutions for all of them in each of 10 runs.

In Table 2, we summarize the results of an empirical
evaluation of tested algorithms for instances in the second
dataset. The structure of this table is the same as that of
Table 1. As a basis for comparison, we use, for each instance,
the value of the best solution obtained from 10 runs of
the ITS algorithm. This value, denoted by 𝐹, is given in
the second column. The results from Table 2 indicate that
ITS significantly outperforms both reference algorithms in
terms of solution quality. A direct comparison of algorithms
across problem instances, using 𝐹aver − 𝐹 as a metric for ITS
effectiveness, shows that ITS yields better solutions than NS-
R and NS-TS in 18 and, respectively, 17 cases out of 20.We see
that NS-TS was able to reach the best results for 3 instances
in the dataset. Another NS variation, NS-R, has obtained the
best solution value in one case only.

Table 3 reports comparative results of ITS with NS-R
and NS-TS for instances of size ranging from 1000 to 2000
vertices. The number of vertices is encoded in the instance
name. The first three columns of the table have the same
meaning as in Table 2. The fourth column displays the gap
of the value of the best solution out of 10 runs (the gap of
the average value of 10 solutions) found by NS-R to the best
value 𝐹. The last column provides these statistics for the NS-
TS method. The values shown in the second column were
obtained by the ITS algorithm. From the results in Table 3,
we see that the superiority of the proposed algorithm over

NS-R and NS-TS is more pronounced than in the previous
experiments. In fact, ITS dominates bothNS-R andNS-TS on
all instances in the third dataset. Both theNS variations failed
to reach the best value in all cases. By analyzing the results in
Tables 2 and 3, we also find that NS-R and NS-TS perform
comparably in terms of solution quality, with NS-TS having
a slight edge. A similar conclusion has been reached in the
study of Brusco and Köhn [6].

4. Conclusions

In this paper we have presented an iterated tabu search
algorithm for the clique partitioning problem. The described
method incorporates tabu search, local search, and solution
perturbation procedures.The latter is an essential component
of the approach, because, according to our experience, to be
successful, a tabu search-based algorithm for graph partition-
ing type problems should use a sufficiently powerful search
diversification mechanism.

Experimental evaluations on three sets of CPP instances
of size up to 2000 show that the proposed algorithm is able
to produce solutions of high quality. In particular, we can
conclude that our algorithm exhibits superior performance
compared to the method of Brusco and Köhn. However, we
surmise that, for the largest instances in the test suite, the best
solutions obtained probably are not the best possible.Wehave
experienced that in order to find improved solutions using
ITS a big amount of CPU time is needed. The development
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Table 3: Comparison of ITS with NS-R and NS-TS on larger CPP instances.

Instance Best value ITS NS-R NS-TS
𝐹 𝐹best − 𝐹 (𝐹aver − 𝐹) 𝐹best − 𝐹 (𝐹aver − 𝐹) 𝐹best − 𝐹 (𝐹aver − 𝐹)

p1000-1 −883359 0 (2190.5) 7099 (11056.4) 6467 (12371.8)
p1000-2 −879792 0 (1507.5) 7851 (12533.1) 7262 (11585.2)
p1000-3 −862969 0 (1690.8) 6518 (9638.3) 7516 (9905.1)
p1000-4 −865754 0 (1167.4) 8388 (12325.2) 7346 (10487.2)
p1000-5 −887314 0 (2224.1) 6990 (11777.1) 4777 (10263.6)
p1500-1 −1614791 0 (6883.5) 22179 (26820.6) 17669 (23080.2)
p1500-2 −1642442 0 (5174.1) 21126 (26973.8) 20750 (27272.0)
p1500-3 −1600857 0 (2457.3) 12599 (22708.8) 12005 (19924.9)
p1500-4 −1633081 0 (3884.2) 19236 (25841.2) 12248 (21993.8)
p1500-5 −1585484 0 (3005.8) 16894 (24918.8) 12430 (20878.4)
p2000-1 −2489880 0 (4229.5) 32501 (40603.7) 25242 (40091.7)
p2000-2 −2479127 0 (4504.4) 34047 (41348.2) 21122 (37640.4)
p2000-3 −2527119 0 (4480.4) 29320 (37828.0) 18350 (33717.8)
p2000-4 −2511914 0 (4461.9) 28342 (38291.0) 32269 (42376.9)
p2000-5 −2499690 0 (7846.1) 32928 (42543.9) 30561 (37686.7)
Average 0 (3713.8) 19067.9 (25680.5) 15734.3 (23951.7)

of fast and powerful heuristic algorithms for the CPP is an
important line of further research.
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de classification automatique,” I.C.C. Bulletin, vol. 4, pp. 175–191,
1965.

[24] J. F. Marcotorchino and P. Michaud, “Heuristic approach to
the similarity aggregation problem,” Methods of Operations
Research, vol. 43, pp. 395–404, 1981.

[25] S. G. de Amorim, J.-P. Barthélemy, and C. C. Ribeiro, “Clus-
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